Библиотека электронных книг г. Симферополя » Математика » Введение в теорию солитонов - Лэм Дж.Л.

Книги

Введение в теорию солитонов - Лэм Дж.Л.

 
Название: Введение в теорию солитонов
Автор: Лэм Дж.Л.
Категория: Математика
Тип: Книга
Дата: 07.01.2009 20:21:35
Скачано: 408
Оценка:
Описание: Каждый приступающий к изучению традиционного курса математической физики скоро убеждается, что ббльшую часть времени ему придется посвятить теории небольшого числа конкретных линейных дифференциальных уравнений в частных производных, среди которых особо важны всего три: волновое уравнение, уравнение теплопроводности и уравнение Лапласа. Первостепенная роль этих (и некоторых других) уравнений, сформулированных еще в прошлом веке, объясняется в основном их исключительной универсальностью — трудно найти раздел точного естествознания, в котором бы они не применялись. Для последних двух десятилетий развития математической физики характерен важный прогресс. Оказалось, что список фундаментальных уравнений можно продолжить. В него следует включить несколько существенно нелинейных уравнений, по крайней мере три из которых — уравнение Кортевега — де Фриза (КдФ), нелинейное уравнение Шрёдингера (НШ) и уравнение sine-Gordon, — возникая в самых разнообразных задачах физики, механики и отчасти чистой математики, по степени универсальности стали сравнимы с основными уравнениями математической физики. Эти уравнения родственны между собой. Все они имеют специальные, специфически нелинейные частные решения — солитоны, локализованные в пространстве и во времени. Солитоны сталкиваются между собой, могут образовывать связанные состояния и вообще во многом ведут себя подобно классическим частицам. Упомянутые уравнения обладают также исключительным свойством «полной интегрируемости в том смысле, что для них существуют бесконечные наборы коммутирующих интегралов движения. Кроме того, существует процедура эффективного исследования этих уравнений, позволяющая, в частности, точно вычислять бесконечные серии их частных решений. Эта процедура основана на теории прямой и обратной задач рассеяния для некоторых обыкновенных дифференциальных операторов типа Штурма— Лиувилля; она получила название метода обратной задачи рассеяния. Несомненно, что солитоны широко распространены в природе. Первым изученным примером солитонов были уединенные волны на поверхности жидкости, но постепенно выяснилось, что с помощью солитонов можно описывать самые разные физические объекты — от элементарных частиц до черных дыр и рукавов галактик. И во многих случаях математическая модель,
Файл: 2.98 МБ
Скачать